The correct option is D x∈(−1,0)
logx+3(x2−x)<1
x(x−1)>0
⇒x>1 or x<0
Let x+3>1⇒x>−2
⇒x2−x<x+3
⇒x2−2x−3<0
⇒(x−3)(x+1)<0
Hence, x∈(−1,0)∪(1,3) ⋯(1)
Similarly, let 0<x+3<1
⇒−3<x<−2
⇒x2−x>x+3
⇒x2−2x−3>0⇒(x−3)(x+1)>0
⇒x∈(−3,−2) ⋯(2)
From (1) and (2), x∈(−3,−2)∪(−1,0)∪(1,3)