The correct options are
B x2+1∈(2,5), if x<0
C x2−1∈(3,8), if x>0
D Number of integral values of x satisfying the given inequality is 0
(x2−x−1)(x2−x−7)<−5
Let x2−x=t
Then, (t−1)(t−7)<−5
⇒t2−8t+12<0⇒(t−2)(t−6)<0⇒t∈(2,6)⇒2<x2−x<6
Case I:x2−x>2
∴x2−x−2>0⇒(x+1)(x−2)>0∴x∈(−∞,−1)∪(2,∞) ⋯(1)
Case II:x2−x<6
∴x2−x−6<0⇒(x+2)(x−3)<0∴x∈(−2,3) ⋯(2)
From (1) and (2),
x∈(−2,−1)∪(2,3)
There are no integral values of x in the solution set.
For x<0, x∈(−2,−1)
⇒x2∈(1,4)
⇒x2+1∈(2,5)
For x>0, x∈(2,3)
⇒x2∈(4,9)
⇒x2−1∈(3,8)