The correct option is C x≤0 or x≥4
Let f(x)=(x−1|+(x−2|+(x−3|→If x≤1f(x)=−(x−1)−(x−2)−(x−3)⇒f(x)=−x+1−x+2−x+3⇒f(x)=−3x+6Now, f(x)≥6⇒−3x+6≥6⇒x≤0∴x≤0→If 1≤x≤2f(x)=(x−1)−(x−2)−(x−3)⇒f(x)=x−1−x+2−x+3⇒f(x)=−x+4Now, f(x)≥6⇒−x+4≥6⇒−x≥2which is not possible as 1≤x≤2→If 2<x≤3f(x)=(x−1)+(x−2)−(x−3)⇒f(x)=x−1+x−2−x+3⇒f(x)=xNow, f(x)≥6⇒x≥6which is not possible as x≤3→If x>3f(x)=(x−1)+(x−2)+(x−3)⇒f(x)=x−1+x−2+x−3⇒f(x)=3x−6Now, f(x)≥6⇒3x−6≥6⇒x≥4∴x≥4Range of x is x≤0 or x≥4