If x=secθ-cosθandy=secnθ-cosnθ, then
(x2+4)dydx2=n2(y2+4)
(x2+4)dydx2=x2(y2+4)
(x2+4)dydx2=(y2+4)
None of these
Explanation for the correct option.
Step 1: Differentiate xandy with respect to θ.
x=secθ-cosθ⇒dxdθ=secθtanθ+sinθ
y=secnθ-cosnθ⇒dydθ=nsecn-1θsecθtanθ+ncosn-1θsinθ=nsecnθtanθ+ncosn-1θsinθ
Step 2: Find dydx.
dydx=dydθ×dθdx=nsecnθtanθ+ncosn-1θsinθsecθtanθ+sinθ=nsecnθtanθ+cosnθcosθsinθsecθtanθ+tanθcosθ=ntanθsecnθ+cosnθtanθsecθ+cosθ=nsecnθ+cosnθsecθ+cosθ
Step 3: Find dydx2
dydx2=nsecnθ+cosnθsecθ+cosθ2=n2secnθ-cosnθ2+4secθ-cosθ
Hence, option A is correct.