wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If x=secθ-cosθandy=secnθ-cosnθ, then


A

(x2+4)dydx2=n2(y2+4)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

(x2+4)dydx2=x2(y2+4)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

(x2+4)dydx2=(y2+4)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

(x2+4)dydx2=n2(y2+4)


Explanation for the correct option.

Step 1: Differentiate xandy with respect to θ.

x=secθ-cosθdxdθ=secθtanθ+sinθ

y=secnθ-cosnθdydθ=nsecn-1θsecθtanθ+ncosn-1θsinθ=nsecnθtanθ+ncosn-1θsinθ

Step 2: Find dydx.

dydx=dydθ×dθdx=nsecnθtanθ+ncosn-1θsinθsecθtanθ+sinθ=nsecnθtanθ+cosnθcosθsinθsecθtanθ+tanθcosθ=ntanθsecnθ+cosnθtanθsecθ+cosθ=nsecnθ+cosnθsecθ+cosθ

Step 3: Find dydx2

dydx2=nsecnθ+cosnθsecθ+cosθ2=n2secnθ-cosnθ2+4secθ-cosθ

Hence, option A is correct.


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon