If x=secθ−cosθ,y=sec10θ−cos10θ and (x2+4)=k(y2+4), then k is equal to
A
1100
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
100
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D100 ∵x2+4=(secθ−cosθ)2+4=(secθ+cosθ)2....(i) Similarly, y2+4=(sec10θ+cos10θ)2....(ii) Now, dxdθ=secθtanθ+sinθ=tanθ(secθ+cosθ) and dydθ=10sec9θsecθtanθ−10cos9θ(−sinθ) =10tanθ(sec10θ−cos10θ)⇒dydx=dydθdxdθ=10tandθ(sec10+cos10dθ)tanθ(secθ+cosθ)∴(dydx)2=100(sec10+cos10θ)(secθ+cosθ)2=100(y2+4)(x2+4) [from Eq. (i), (ii)] or (x2+4)(dydx)2=100(y2+4) k=100