If x=secθ−cosθ,y=sec10θ−cos10θ and (x2+4)(dydx)2=k(y2+4), then k is equal to
A
1100
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
100
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D100 ∵x2+4=(secθ−cosθ)2+4=(secθ+cosθ)2⋯(i)Similarly,y2+4=(sec10θ+cos10θ)2⋯(ii)Now,dxdθ=secθtanθ+sinθ=tanθ(secθ+cosθ)anddydθ=10sec9θsecθtanθ−10cos9θ(−sinθ)=10tanθ(sec10θ−cos10θ)⇒dydx=(dydθ)(dxdθ)=10tanθ(sec10θ+cos10θ)tanθ(secθ+cosθ)∴(dydx)2=100(sec10θ+cos10θ)(secθ+cosθ)2=100(y2+4)(x2+4)or(x2+4)(dydx)2=100(y2+4)
On comparing with the expression given we get k = 100