wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=secθcosθ,y=secnθcosnθ, then dydx=

Open in App
Solution

x=secθcosθ
x2=sec2θ+cos2θ2
x2+4=sec2θ+cosθ+2
x2+a(secθ+cosθ)2
(secθ+cosθ)=x2+4
y=secnθcosnθ
y2=sec2nθ+cos2nθ2
y2+4=sec2nθ+cos2nθ+2
y2+4=(secnθ+cosnθ)2
y2+4=(secnθ+cosnθ)
x=secθcosθ
dxdθ=[secθtanθ+sinθ]
dxdθsinθ[1cos2θ+1]
y=secnθcosnθ
dydθ=nsecn1θ(sectanθ)ncosn1θ(sinθ)
dydθ=(nsecntanθ)+(ncosnθ+cosnθ)
dydθ=ntanθ[secnθ+cosnθ]
dydx=ntanθ[secnθ+cosnθ](sinθ)[1+cos2θcos2θ]
=n(sinθcosθ)(secn+secnθθ)cos2θ(sinθ)(1+cos2θ)
=ncosθ(secnθ+cosnθ)cosθ(1cosθ+cosθ)
dydx=(secnθ+cosnθ)(secθ+cosθ)=ny2+4x2+4
dydx=ny2+4x2+4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon