If x=sin130°cos80°,y=sin80°cos130°,z=1+xy which one of the following is true?
x>0,y>0,z>0
x>0,y<0,0<z<1
x>0,y<0,z>0
x<0,y<0,0<z<1
Explanation for the correct option.
Step 1: Find x.
x=sin130°cos80°=sin90°+40°cos80°bysin90°+θ=cosθ=cos40°cos80°
That means x>0.
Step 2: Find y.
y=sin80°cos130°=sin80°cos90°+40°bycos90°+θ=-sinθ=-sin80°sin40°
That means y<0.
Step 3: Find z.
z=1+xy
As x>0, and y<0, so xy<0.
So, z=1+xy<1.
⇒0<z<1
Therefore, x>0, y<0, and 0<z<1.
Hence, option B is correct.
The values of x and y are(a) x=130, y=120(b) x=120, y=130(c) x=120, y=120(d) x=130, y=130
Evaluate :cos48°-sin42°