If x sin3θ+y cos3θ=sinθ cosθ and x sinθ=y cosθ, then x2+y2=
1
Given: x sin3θ+y cos3θ=sinθ cos θ
⇒x sinθ(sin2θ)+y cos3θ=sinθ cosθ.....(i)
We know, x sinθ=y cosθ... (given)
Substitute in (i), we get,
∴y cos θsin2θ+y cos3θ=sinθ cosθ
⇒y cosθ(sin2θ+cos2θ)=sinθ cosθ
∴y cosθ=sinθ cosθ⇒y=sinθ....(ii)
Again, from (i),
x sin3θ+y cos3θ=sinθ cosθ
x sin3θ+y cosθ(cos2θ)=sinθ cosθ
We know, y cosθ=x sinθ ....(given)
On substituing, we get,
∴x sin3θ+x sinθ cos2θ=sinθ cosθ
x sinθ(sin2θ+cos2θ)=sinθ cosθ
x sinθ=sinθ cosθ
∴x=cosθ....(iii)
Squaring and adding eqn (ii) and (iii) we get,
x2+y2=cos2θ+sin2θ
⇒x2+y2=1