x=sin(700).sin(500)
We know that sin(θ)=cos(900−θ)
∴x=sin(700).sin(500)=cos(90−700).cos(90−500)=cos(200).cos(400)
y=cos(600).cos(800)
We know that cos(θ)=sin(900−θ)
∴y=cos(600).cos(800)=sin(90−600).sin(90−800)=sin(300).sin(100)
∴xy=cos(200).cos(400).sin(300).sin(100)
Multiply both sides of equation with 2cos(100)
∴xy(2cos(100))=cos(200).cos(400).sin(300).sin(100).2cos(100)
Now, we will use the formula 2sinθcosθ=sin2θ
∴xy(2cos(100))=cos(200).cos(400).sin(300).(2sin(100).cos(100))
∴2xy.cos(100)=cos(200).cos(400).sin(300).(sin200)
Multiply 2 on both sides of above equation
∴4xy.cos(100)=(2(sin200).cos(200)).cos(400).sin(300)
∴4xy.cos(100)=(sin(400)).cos(400).sin(300)
Multiply 2 on both sides of above equation
∴8xy.cos(100)=(2sin(400).cos(400)).sin(300)
∴8xy.cos(100)=sin(800).sin(300)
∴8xy.cos(100)=cos(100).sin(300)
∴8xy=sin(300)=12
∴xy=116
So, the answer is option (A)