If x=sinα,y=sinβ,z=sin(α+β), then cos(α+β) is equal to
x=sinα,y=sinβ,z=sin(α+β)
Now,
z2−x2−y2=sin2(α+β)−sin2α−sin2β=sin(α+β+α)sin(α+β−α)−sin2β=sin(2α+β)sinβ−sin2β=sinβ(sin(2α+β)−sinβ)=sinβ(2cos(2α+β+β2)sin(2α+β−β2))=2sinαsinβcos(α+β)=2xycos(α+β)
Therefore,
cos(α+β)=z2−x2−y22xy