x=sin(2π7)+sin(4π7)+sin(8π7)x2=sin2(2π7)+sin2(4π7)+sin2(8π7)+2sin(2π7)sin(4π7)+2sin(4π7)sin(8π7)+2sin(8π7)sin(2π7)y=cos(2π7)+cos(4π7)+cos(8π7)y2=cos2(2π7)+cos2(4π7)+cos2(8π7)+2cos(2π7)cos(4π7)+2cos(4π7)cos(8π7)+2cos(8π7)cos(2π7)So,x2+y2=(sin2(2π7)+cos2(2π7))+(sin2(4π7)+cos2(4π7))+(sin2(8π7)+cos2(8π7))+2(sin(2π7)sin(4π7)+cos(2π7)cos(4π7))+2(sin(4π7)sin(8π7)+cos(4π7)cos(8π7))+2(sin(8π7)sin(2π7)+cos(8π7)cos(2π7))A2+B2=1+1+1+2cos(2π7)+2cos(4π7)+2cos(6π7)x2+y2=3+2(cos(2π7)+cos(6π7))+2cos(4π7).A2+B2=3+2(2cos(4π7)cos(2π7))+2cos(4π7)A2+B2=3+4cos(4π7)cos(2π7)+2cos(4π7)A2+B2=3+2cos(4π7)(2cos(2π7)+1)