The correct option is
B 2
Let α=cos(2π7)+isin(2π7)
Then:α7=cos(2π)+isin(2π)=1+i0
So:0=α7−1=(α−1)(α6+α5+α4+α3+α2+α+1)
Consider (α4+α2+α)2
=α2+α4+α8+2(α3+α6+α5)
=α+α2+α4+2(α+α2+α3+α4+α5+α6−α−α2−α4)
=α+α2+α4+2(−1−α−α2−α4)
=−(1+α2+α4)−2
So,α+α2+α4 is a root of:
t2+t+2=0 which we can solve by completing the square:
⇒t2+2×12t+14−14+2=0
⇒(t+12)2−1−84=0
⇒(t+12)2−−74=0
⇒(t+12)2−(√7i2)2=0
⇒(t+12−√7i2)(t+12+√7i2)=0
So,α+α2+α4=t=−12±√7i2
⇒(cos(2π7)+cos(4π7)+cos(8π7))+i(sin(2π7)+sin(4π7)+sin(8π7))=−12±√7i2
Equating the real and imaginary parts,we get
cos(2π7)+cos(4π7)+cos(8π7)=−12
and sin(2π7)+sin(4π7)+sin(8π7)=±√72
∴x=sin(2π7)+sin(4π7)+sin(8π7)=±√72
and y=cos(2π7)+cos(4π7)+cos(8π7)=−12
∴x2+y2=(±√72)2+(−12)2
⇒x2+y2=74+14=84=2
Hence x2+y2=2