If x=sintandy=sinpt, then the value of (1-x2)d2ydx2-xdydx+p2y=
0
1
-1
2
Explanation for the correct option.
Step 1: Find First derivative.
x=sint⇒dxdt=costy=sinpt⇒dxdt=pcospt
Now,
dydx=dydt×dtdx⇒dydx=pcosptcost⇒dydxcost=pcospt
By squaring both sides we get
dydx2cos2t=p2cos2pt⇒dydx21-sin2t=p21-sin2pt⇒dydx21-x2=p21-y2
Step 2: Find Second derivative.
1-x22dydxd2ydx2+dydx2-2x=-2p2ydydx⇒21-x2dydxd2ydx2-2xdydx2=-2p2ydydx⇒1-x2d2ydx2-xdydx=-p2y⇒1-x2d2ydx2-xdydx+p2y=0
Hence, option A is correct.
Evaluate :cos48°-sin42°