wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If x = sin t, y = sin kt, show that (1x2)d2ydx2xdydx+k2y=0(kconstant)

Open in App
Solution

We have x=sint and y=sinkt
dxdt=cost and dydt=kcoskt
dydx=dydtdxdt=kcosktcost
costdydx=kcoskt
squaring both sides, we get
cos2t(dydx)2=k2cos2kt
(dydx)2(1sin2t)=k2(1sin2kt)
(dydx)2(1x2)=k2(1y2)
Differentiating both sides w.r.t x we get
2(1x2)dydxd2ydx22x(dydx)2=2k2ydydx
Divide both sides by 2dydx we get
(1x2)d2ydx2xdydx+k2y=0
Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon