If xsinθ=ycosθ=2ztanθ1–tan2θ, then 4z2(x2+y2) is equal to:
x2+y23
x2-y23
x2-y22
x2+y22
Explanation for the correct option.
Step 1: Simplify 2ztanθ1–tan2θ
2ztanθ1–tan2θ=2zsinθcosθ1–sin2θcos2θ=2zsinθcosθcos2θ-sin2θcos2θ=2zsinθcosθcos2θbycos2x=cos2x-sin2x
Step 2: Simplify xsinθ=ycosθ=2ztanθ1–tan2θ
xsinθ=2zsinθcosθcos2θ⇒x=2zcosθcos2θ
Similarly
ycosθ=2zsinθcosθcos2θ⇒y=2zsinθcos2θ
Step 3: Find the value of (x2-y2)
x2-y2=4z2cos2θ-4z2sin2θcos22θ=4z2cos2θ-sin2θ×1cos22θ=4z2cos2θ×1cos22θ=4z2cos2θ........1
Step 4: Find the value of 4z2(x2+y2)
4z2(x2+y2)=4z22zcosθcos2θ2+2zsinθcos2θ2=4z24z2cos2θ+4z2sin2θcos22θ=4z24z2cos22θ=16z2cos22θ=x2-y22from1
Hence, option C is correct