If xsinθ=ysin(θ+2π/3)=zsin(θ+4π/3) then xy+yz+zx is equal to:
1
12
0
None of these
Explanation for the correct option.
Step 1: Simplify xsinθ=ysin(θ+2π/3)
xsinθ=ysinθ+2π3⇒xsinθ=ysinθcos2π3+sin2π3cosθbysina+b=sinacosb+sinbcosa⇒xsinθ=ysinθ-12+32cosθ⇒xy=-12sinθ+32cosθsinθ=-12+32cotθ...1
Step 2: Simplify xsinθ=zsin(θ+4π/3)
xsinθ=zsinθ+4π3⇒xsinθ=zsinθcos4π3+sin4π3cosθ⇒xsinθ=zsinθ-12-32cosθ⇒xz=-12sinθ-32cosθsinθ=-12-32cotθ......(2)
Step 3: Add 1and2
xy+xz=-12+32cotθ-12-32cotθ⇒zx+xyyz=-1⇒zx+xy=-yz⇒zx+xy+yz=0
Hence, option C is correct.
How (x+y+z)(x2+y2+z2-xy-yz-zx) = (x+y+z)[(x+y+z)2-3(xy+yz+zx)