wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x1y2+y1x2=1, prove that dydx=1y21x2.

Open in App
Solution

x1y2+y1x2=1
Differentiating throughout with respect to x we get
x121y2(2y)dydx+1y2+y121x2(2x)+1x2dydx=0
xy1y2dydx+1y2+(xy)1x2+1x2dydx=0
(xy1y2+1x2)dydx=dy1x21y2
(xy+(1x2)(1y2)1y2)dydx=(xy(1x2)(1y2)1x2)
(xy(1x2)(1y2))1y2 dydx =(xy(1x2)(1y2))1x2
dydx=1y21x2
Hence dydx=1y21x2.

1190054_1327704_ans_fa97723afd934f4d92214329706be3ce.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon