If x=√5+2, then find the value of x−1x.
2√5
4
2
√5
x=√5+2
∴1x=1√5+2=1×(√5−2)(√5+2)(√5−2)
=√5−2(√5)2−(2)2=√5−25−4=√5−21
=√5−2
∴x−1x=(√5+2)−(√5−2)
=√5+2−√5+2=4
If x=9+4√5, then √x−1x= _______.
If Q (0, 1) is equidistant from P (5, - 3) and R (x, 6), find the value of x.
If 2:9 :: x:27 then find the value of x.