If x=√a tanα and y=√a secα, then y2–x2=__
x=√atanα and y=√asecα
⇒x2=a tan2α and
y2=a sec2α⇒y2−x2=a(sec2α−tan2α)=a
If x = √a tanα and y = √a secα. Find the value of y2 – x2 __
If x = √a tanα and y = √a secα. The value of y2 – x2 is ___.
If x2+y2x2−y2=178, then xy?