If x(y+z−x)logx=y(z+x−y)logy=z(x+y−z)logz, then xyyx=zyyz=xzzx
If x, y and z are variables, verify the cyclic symmetry of the following expressions.
(1) x(y + z) + y(z + x) + z(x + y)
(2) xy(x − y) + yz(y − z) + zx(z − x)
(3) x2y(x + y) + y2z(y + z) + z2x(z + x)
(4) x3(x + y) + y3(y + z) + z3(z + x)
(5) xy2(x − y) + yz2(y − z) + zx2(z − x)