x=tanA+sinA and y=tanA−sinA
considering left hand side,
x2−y2=(x−y)(x+y)=((tanA+sin)−(tanA−sinA))((tanA+sin)+(tanA−sinA))=2tanA×2sinA=4sinAtanA
Considering right hand side,
4√xy=4√(tanA+sinA)(tanA−sinA)=4√tan2A−sin2A=4√sin2Acos2A−sin2A=4√sin2A(1−cos2Acos2A)=4sinA√sin2Acos2A=4sinA√tan2A=4sinAtanA
So,
LHS=RHS
Hence proved