wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=tanA+sinA and y=tanAsinA, then prove that x2y2=4xy

Open in App
Solution

x=tanA+sinA and y=tanAsinA

considering left hand side,

x2y2=(xy)(x+y)=((tanA+sin)(tanAsinA))((tanA+sin)+(tanAsinA))=2tanA×2sinA=4sinAtanA

Considering right hand side,

4xy=4(tanA+sinA)(tanAsinA)=4tan2Asin2A=4sin2Acos2Asin2A=4sin2A(1cos2Acos2A)=4sinAsin2Acos2A=4sinAtan2A=4sinAtanA

So,

LHS=RHS

Hence proved



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon