Take tan−1 on both sides,
⇒tan−1x=1alogy
Differentiate w.r.t x,
1x2+1=1aydydx.....(1)
Again differentiate w.r.t x(∵ we need second order differential equation)
−2x(1+x2)2=−1ay2dydx+1ayd2ydx2
1ayd2ydx2+2x(1+x2)2−1ay2dydx=0
By (1), substitute value of 1x2+1
1ayd2ydx2+2x(1+x2)×1aydydx−1ay2dydx=0
d2ydx2+2x(1+x2)×dydx−1ydydx=0
(1+x2)d2ydx2+2x×dydx−1+x2ydydx=0
Now from (1) substitute 1+x2y=adxdy
(1+x2)d2ydx2+2xdydx−adxdydydx=0
(1+x2)d2ydx2+2xdydx−a=0
Hence proved.