wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=tan(1alogy), prove that (1+x2)d2ydx2+2xdydxa0.

Open in App
Solution

Take tan1 on both sides,
tan1x=1alogy
Differentiate w.r.t x,
1x2+1=1aydydx.....(1)
Again differentiate w.r.t x( we need second order differential equation)
2x(1+x2)2=1ay2dydx+1ayd2ydx2
1ayd2ydx2+2x(1+x2)21ay2dydx=0
By (1), substitute value of 1x2+1
1ayd2ydx2+2x(1+x2)×1aydydx1ay2dydx=0
d2ydx2+2x(1+x2)×dydx1ydydx=0
(1+x2)d2ydx2+2x×dydx1+x2ydydx=0
Now from (1) substitute 1+x2y=adxdy
(1+x2)d2ydx2+2xdydxadxdydydx=0
(1+x2)d2ydx2+2xdydxa=0
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon