−√122+52≤12sinx+5cosx≤√122+52
i.e., 12sinx+5cosx∈[−13,13]
RHS=2(y2−4y+4)+13=2(y−2)2+13
RHS ≥13 and LHS ≤13
So, the equality holds only when LHS = RHS =13
RHS =13 when y=2
LHS =13 when 1213sinx+513cosx=1
⇒sin(x+α)=1 where tanα=512
⇒x=π2−α
∴xy2=(π2−α)
⇒cot(xy2)=cot(π2−α)=tanα=512
⇒12cot(xy2)=5