1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Expansion of (a ± b ± c)²
If x, y > 0...
Question
If
x
,
y
>
0
, then the minimum value of
2
x
2
+
2
x
−
2
x
+
2
y
2
+
2
y
−
2
y
+
2
is equal to
A
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
6
Take
2
common,
2
(
x
2
+
1
x
−
x
+
y
2
+
1
y
−
y
+
1
)
=
2
(
x
2
+
1
x
−
2
x
+
x
+
y
2
+
1
y
−
2
y
+
y
+
1
)
=
2
(
x
2
−
2
x
+
1
+
y
2
−
2
y
+
1
+
x
+
1
x
−
2
+
y
+
1
y
−
2
+
3
)
=
2
(
(
x
−
1
)
2
+
(
y
−
1
)
2
+
(
√
x
−
1
√
x
)
2
+
(
√
y
−
1
√
y
)
2
+
3
)
Now when
x
=
1
,
y
=
1
then all perfect squares will be zero and that can be the minimum values of the perfect squares,
which means it will be the minimum value of the given expression.
=
2
(
0
+
0
+
0
+
0
+
3
)
=
6
∴
min value is
6
.
Hence,
(
C
)
Suggest Corrections
0
Similar questions
Q.
Let
A
=
{
(
x
,
y
)
∈
R
×
R
|
2
x
2
+
2
y
2
−
2
x
−
2
y
=
1
}
,
B
=
{
(
x
,
y
)
∈
R
×
R
|
4
x
2
+
4
y
2
−
16
y
+
7
=
0
}
and
C
=
{
(
x
,
y
)
∈
R
×
R
|
x
2
+
y
2
−
4
x
−
2
y
+
5
≤
r
2
}
.
Then the minimum value of
|
r
|
such that
A
∪
B
⊆
C
is equal to:
Q.
Find the minimum value of 3x + 5y subject to the constraints
− 2x + y ≤ 4, x + y ≥ 3, x − 2y ≤ 2, x, y ≥ 0.