If x + y = 1, then ∑nr=0rnCrxryn−r equals:
nx
ny
n
None
∑nr=0rnCrxryn−r
= nC1xyn−1+2.nC2x2yn−2+3.nC3x3yn−3
+........+n .nCnxn
= nx [yn−1+(n−1)xyn−1+(n−1)(n−2)2x2yn−3+............+xn−1]
= nx(x+y)n−1=nx
If an=n∑r=01nCr , then n∑r=0rnCr equals:
If R=(6√6+14)2n+1 and f=R-[R], where [.] denotes the greatest integer function, then Rf equals:
If n is an odd natural number , then n∑r=0(−1)rrCr equals :