x+y=3
y=3−x
x2y=
x2(3−x)
t=3x2−x3
dtdx=6x−3x2
=3x(2−x)
3x=0∣2−x=0
x=0∣x=2
Now
t=(x2)(3−x)
x=2
=(2)2(3−2)
=4×1
=4
Solve: dydx+2ytanx=sinx, given that y=0, when x=π3. Show that maximum value of y is 18.