If x+y+4=0, find the value of x3+y3-12xy+64.
Finding the value of the given expression:
Let a=x,b=yandc=4
a+b+c=x+y+4=0(Given)
Using identity: a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
So, if a+b+c=0⇒a3+b3+c3=3abc
x3+y3+(4)3=3×4xyx3+y3+64=12xyx3+y3-12xy+64=0
Hence, the value of x3+y3-12xy+64 is 0.
Question 39 Find the value of: (i) x3+y3−12xy+64, when x + y = - 4 (ii) x3−8y3−36xy−216, when x = 2y + 6
if x +y+ 4 =0 , then find the value of x3 + b3 - 12xy + 64