If x, y and z are all different from zero and ∣∣
∣∣1+x1111+y1111+z∣∣
∣∣=0,
then the value of x−1+y−1+z−1 is
(a) xyz
(b) x−1y−1z−1
(c) −x−y−z
(d) −1
(d) We have, ∣∣
∣∣1+x1111+y1111+z∣∣
∣∣=0
Applying C1→C1−C3 and C2→C2−C3
⇒∣∣
∣∣x010y1−z−z1+z∣∣
∣∣=0
Expanding along R1,
x[y(1+z)+z]−0+1(yz)=0⇒x(y+yz+z)+yz=0⇒xy+xyz+xz+yz=0
⇒xyxyz+xyzxyz+xzxyz+yzxyz=0 [on dividing (xyz) from both sides]
⇒1x+1y+1z+1=0⇒1x+1y+1z=−1∴x−1+y−1+z−1=−1