If x,y ∈ C ,
statement 1 : |2x−4y6¯y−3¯¯¯x| = 23
statement 2 : If z ∈ C, then |z|= |¯¯¯z| = |-z| = |¯¯¯¯¯¯¯−z|
Statement 1 is true & statement 2 is correct explanation of statement 1
|2x−4y6¯y−3¯¯¯x| = |2(x−2y)3(2¯y−¯¯¯x)| = 23 |x−2y||−(¯¯¯x−2¯y)| = 23 |x−2y||−(¯¯¯¯¯¯¯¯¯¯¯¯¯¯(x−2y))|
[ ∵ ¯¯¯¯Z1-¯¯¯¯Z2 = ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯Z1−Z2 ]
Let x-2y = z
Now, 23|x−2y||−(¯¯¯¯¯¯¯¯¯¯¯x−2y)|
= 23 \(\frac{|z|}{-\overline z}
= 23 [∵|z|=|−¯¯¯z|]
Hence, Statement 1 is true & Statement 2 is correct explanation of statement 1.