The correct options are
B If x=nπ+π4, then y=−nπ
C If x=nπ, then y=−nπ+π4
From tanx+tany=1 we have sinxcosx+sinxcosy=1
⇒sinxcosy+sinycosx=cosxcosy
⇒sin(x+y)=cosxcosy
⇒2sin(x+y)=cos(x+y)+cos(x−y)
⇒2sinπ4=cosπ4+cos(x−y)
⇒cos(x−y)=1√2=cosπ4
⇒x−y=2nπ±π4, n∈Z ...(1)
Also we have x+y=π4 ...(2)
From Eqs. (1) and (2), we have
x=nπ+π4 and y=−nπ, n∈Z
or x=nπ and y=−nπ+π4, n∈Z