If x+y=π4 and tanx+tany=1, then (n∈Z)
x+y=π4
Taking tan on both sides,
tan(x+y)=tanx+tany1−tanxtany=1=11−tanxtany (Given, tanx+tany=1)
1−tanxtany=1
tanxtany=0
tanx=0 or tany=0
⇒tany=1 or ⇒tanx=1
x=nπ,y=−nπ+π4 or
y=−nπ,x=nπ+π4
Hence, options B and C are correct.