If x=ycos2π3=zcos4π3, then xy+yz+zx is equal to
We have cos2π3=cos2×18003=cos1200=cos(1802−600)=−cos600=−12
Also cos4π3=cos4×18003=cos2400=cos(1802+600)=−cos600=−12
So, x=y×(−12)=z×(−12)
=>y=−2x;z=−2x
=>xy+yz+zx=x(−2x)+(−2x)(−2x)+(−2x)x=−2x2+4x2−2x2=0