The correct option is
A logx(1+logx)2Given
xy=ex−yTaking logarithm both sides, logxy=loge(x−y) ⇒y×logx=(x−y)×loge
⇒ylogx=x−y⇒y+ylogx=x⇒y(1+logx)=x⇒y=x1+logx
∵ddx(uv)=vdudx−udvdxv2
Here, let u=x and v=1+logx
∴ddx(x1+logx)=(1+logx)dxdx−xd(1+logx)dx(1+logx)2=1+logx−x(0+1x)(1+logx)2=logx(1+logx)2