If (x,y) lies on circle x2+y2=1, then the maximum values of (x+y)2 is
We have
(x, y) lies on the circle
x2+y2=1 ...... (1)
Then,
Maximum values of (x+y)2 is
(x+y)2=x2+y2+2xy
=1+2xy
let
z=1+2xy
By equation (1) to
y=√1−x2
z=1+2x√1−x2
On diff. and we get.
dzdx=0+2[xddx√1−x2+√1−x2]
dzdx=2x×12√1−x2(−2x)+√1−x2
For maximum and minimum
dzdx=0
−4x22√1−x2+√1+x2=0
⇒−2x2√1−x2+√1+x2=0
⇒−2x2+(1−x2)=0
⇒−2x2+1−x2=0
⇒−3x2+1=0
⇒−3x2=−1
⇒x2=13
⇒x=1√3