If x , y , R , then solve the equation : (3y2+1)log3x=1
(2y2+10)=logx27
Open in App
Solution
By definition x > 0 and x≠0 (3y2+1)log3x=1....(1) and (2y2+10)=logx27=3logx3=3log3x or (2y2+10)log3x=3 ....(2) Dividing (1) and (2), we get 2y2+103y2+1=31 or 2y2+10=9y2+3 ∴y2=1andfrom(1),4log3x=1 or log3x=14orx=314 ∴x=314,y=±1