Here, xy+yx=ab
Let u+v=abwhere u=xy and v=yx∴dudx+dvdx=0 ...(i)
Now,
u=xy⇒logu=ylogx⇒1ududx=y.1x+logx.dydx⇒dudx=xy(yx+logxdydx)
Again,
v=yx⇒logv=xlogy⇒1vdvdx=x.1ydydx+logy⇒dvdx=yx(xydydx+logy)
Now,xy(yx+logxdydx)+yx(xydydx+logy)=0 [using (i)]⇒(xylogx+xyx−1)dydx=−(yxlogy+yxy−1)⇒dydx=−yxlogy+yxy−1xylogx+xyx−1