wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xy+yx=ab, then find dydx.

Open in App
Solution

Here, xy+yx=ab
Let u+v=abwhere u=xy and v=yxdudx+dvdx=0 ...(i)

Now,
u=xylogu=ylogx1ududx=y.1x+logx.dydxdudx=xy(yx+logxdydx)

Again,
v=yxlogv=xlogy1vdvdx=x.1ydydx+logydvdx=yx(xydydx+logy)

Now,xy(yx+logxdydx)+yx(xydydx+logy)=0 [using (i)](xylogx+xyx1)dydx=(yxlogy+yxy1)dydx=yxlogy+yxy1xylogx+xyx1

flag
Suggest Corrections
thumbs-up
181
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon