If x+y+z=0, then prove that ∣∣ ∣∣xaybzcyczaxbzbxcya∣∣ ∣∣=xyz∣∣ ∣∣abccabbca∣∣ ∣∣
Given x+y+z=0
To prove:
∣∣
∣∣xaybzcyczaxbzbxcya∣∣
∣∣=xyz∣∣
∣∣abccabbca∣∣
∣∣
∴ LHS =∣∣
∣∣xaybzcyczaxbzbxcya∣∣
∣∣
=xa(za.ya−xb.xc)−yb(yc.ya−xb.zb)+zc(yc.xc−za.zb)=xa(a2yz−x2bc)−yb(y2ac−b2xz)+zc(c2xy−z2ab)=xyza3−x3abc−y3abc+b3xyz+c3xyz−z3abc=xyz(a3+b3+c3)−abc(x3+y3+z3)=xyz(a3+b3+c3)−abc(3xyz)
[∵x+y+z=0⇒x3+y3+z3=3xyz]
=xyz(a3+b3+c3−3abc) .....(i)
Now, RHS =xyz∣∣
∣∣abccabbca∣∣
∣∣=xyz∣∣
∣∣a+b+cbca+b+caba+b+cca∣∣
∣∣ [∵C1→C1+C2+C3]
=xyz(a+b+c)∣∣
∣∣1bc1ab1ca∣∣
∣∣ [taking (a+b+c) common from C1]
=xyz(a+b+c)∣∣
∣∣0b−cc−a0a−cb−a1ca∣∣
∣∣
[∵R1→R1−R3andR2→R2−R3]
Expanding along C1
=xyz(a+b+c)[1(b−c)(b−a)−(a−c)(c−a)]=xyz(a+b+c)(b2−ab−bc+ac+a2+c2−2ac)=xyz(a+b+c)(a2+b2+c2−ab−bc−ca)
=xyz(a3+b3+c3−3abc) .....(ii)
From Eqs. (i) and (ii),
LHS=RHS
⇒∣∣
∣∣xaybzcyczaxbzbxcya∣∣
∣∣=xyz∣∣
∣∣abccabbca∣∣
∣∣
Hence proved.