wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x+y+z=0,then prove that xyz(x+y)(y+z)(z+x)=1 where (xy,yz,zx) ?

Open in App
Solution

x+y+z=0
then, xyz(x+y)(y+z)(z+x)=1
LHS. xyz(x+y)(y+z)(z+x)
xyzxy+y2+xz+yz)(z+x)
xyzxyz+y2z+xz2+z2y+x2y+xy2+x2z+xyz
xyz2xyz+y2z+xz2+z2y+x2y+xy2+x2z
xyz2xyz+y2z+z2y+xz2+x2z+x2y+xy2
xyz2xyz+yz(z+y)+xz(z+x)+xy(x+y)(1)
x+y+z=0z+x=yx+y=zz+y=x⎥ ⎥ ⎥ ⎥
xyz2xyz+yz(x)+xz(y)+xy(z)
xyz2xyz+(xyzxyzxyz)
xyz2xyz3xyz=xyzxyz
=1 RHS.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circle and Point on the Plane
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon