If x+y+z=0 then x3+y3+z3 =___?
0
-3xyz
3xyz
2xyz
We know that, x3+y3+z3–3xyz = (x+y+z)(x2+y2+z2−2xy–2yz–2zx)
If x+y+z=0 then, x3+y3+z3–3xyz=(0)(y2+z2−2xy–2yz–2zx)=0 ⇒x3+y3+z3=3xyz
If x+y+z=0, then find the value of x3+y3+z3.