Given: Δ=∣∣
∣
∣∣xx21+x3yy21+y3zz21+z3∣∣
∣
∣∣=0
Here, expanding element of C3 into two determinants.
⇒∣∣
∣
∣∣xx21yy21zz21∣∣
∣
∣∣+∣∣
∣
∣∣xx2x3yy2y3zz2z3∣∣
∣
∣∣=0
⇒∣∣
∣
∣∣xx21yy21zz21∣∣
∣
∣∣+∣∣
∣
∣∣xx2x3yy2y3zz2z3∣∣
∣
∣∣=0
Taking x,y,z common from R1,R2,R3 respectively.
⇒∣∣
∣
∣∣xx21yy21zz21∣∣
∣
∣∣+xyz∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣=0
Replacing C3↔C2
⇒(−1)∣∣
∣
∣∣x1x2y1y2z1z2∣∣
∣
∣∣+xyz∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣=0
Replacing C1↔C2
⇒(−1)(−1)∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣+xyz∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣=0
⇒∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣+xyz∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣=0
⇒∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣(1+xyz)=0
Using R2→R2−R1 and R3→R3−R1
⇒∣∣
∣
∣∣1xx21−1y−xy2−x21−1z−xz2−x2∣∣
∣
∣∣(1+xyz)=0
⇒∣∣
∣
∣∣1xx20(y−x)(y−x)(y+x)0(z−x)(z−x)(z+x)∣∣
∣
∣∣(1+xyz)=0
Taking common factor (y−x) from R2 and (z−x) from R3.
⇒(1+xyz)(y−x)(z−x)∣∣
∣∣1xx201y+x01z+x∣∣
∣∣=0
⇒(1+xyz)(y−x)(z−x)(1(z+x)−1(y+x))=0
⇒(1+xyz)(y−x)((z−x)(z+x−y−x)=0
⇒(1+xyz)(y−x)(z−x)(z−y)=0
Since it is given that x,y,z all are different,
i.e., y−x≠0,z−x≠0,z−y≠0
So, only possibility is
(1+xyz)=0
Hence proved.