wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x,y,z are different and Δ=∣ ∣ ∣xx21+x3yy21+y3zz21+z3∣ ∣ ∣=0, then show that 1+xyz=0.

Open in App
Solution

Given: Δ=∣ ∣ ∣xx21+x3yy21+y3zz21+z3∣ ∣ ∣=0
Here, expanding element of C3 into two determinants.
∣ ∣ ∣xx21yy21zz21∣ ∣ ∣+∣ ∣ ∣xx2x3yy2y3zz2z3∣ ∣ ∣=0
∣ ∣ ∣xx21yy21zz21∣ ∣ ∣+∣ ∣ ∣xx2x3yy2y3zz2z3∣ ∣ ∣=0
Taking x,y,z common from R1,R2,R3 respectively.
∣ ∣ ∣xx21yy21zz21∣ ∣ ∣+xyz∣ ∣ ∣1xx21yy21zz2∣ ∣ ∣=0
Replacing C3C2
(1)∣ ∣ ∣x1x2y1y2z1z2∣ ∣ ∣+xyz∣ ∣ ∣1xx21yy21zz2∣ ∣ ∣=0
Replacing C1C2
(1)(1)∣ ∣ ∣1xx21yy21zz2∣ ∣ ∣+xyz∣ ∣ ∣1xx21yy21zz2∣ ∣ ∣=0
∣ ∣ ∣1xx21yy21zz2∣ ∣ ∣+xyz∣ ∣ ∣1xx21yy21zz2∣ ∣ ∣=0
∣ ∣ ∣1xx21yy21zz2∣ ∣ ∣(1+xyz)=0
Using R2R2R1 and R3R3R1
∣ ∣ ∣1xx211yxy2x211zxz2x2∣ ∣ ∣(1+xyz)=0
∣ ∣ ∣1xx20(yx)(yx)(y+x)0(zx)(zx)(z+x)∣ ∣ ∣(1+xyz)=0
Taking common factor (yx) from R2 and (zx) from R3.
(1+xyz)(yx)(zx)∣ ∣1xx201y+x01z+x∣ ∣=0
(1+xyz)(yx)(zx)(1(z+x)1(y+x))=0
(1+xyz)(yx)((zx)(z+xyx)=0
(1+xyz)(yx)(zx)(zy)=0
Since it is given that x,y,z all are different,
i.e., yx0,zx0,zy0
So, only possibility is
(1+xyz)=0
Hence proved.

flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon