If x, y, z are distinct positive real numbers then the expression below would be x2(y+z)+y2(x+z)+z2(x+y)xyz
Here x,y and z are distinct positive real number.
So,x2(y+z)+y2(x+z)+z2(x+y)xyz
=xy+xz+yx+yz+zx+zy
=(xy+yx)+(yz+zy)+(zx+xz)
(ab+ba>2 if a & b are distinct numbers.)
⇒ 2+2+2
⇒ 6
Hence option (c)