If x,y,z are non negative integers so that x + y + z = 12, then the
maximum value of xyz + xy + yz + zx is
112
1.We have(x + 1) (y + 1) (z + 1) = xyz + xy + yz + zx + x + y + z + 1 = xyz + xy + yz + zx + 13;
And (x + 1) (y + 1) (z + 1) = 15. Using AM.GM inequality we get xyz + xy + yz + zx + 13 ≤ =125, xyz + xy + yz + zx ≤ 112. Equality holds if x + 1 = y + 1 = z + 1 ; i.e., x = y = z = 4.
So the desired maximum is 112. The answer is B.