∣∣ ∣∣1+x111+y1+2y11+z1+z1+3z∣∣ ∣∣dividingR1,R2&R3byx1y&zrepectively=xyz∣∣ ∣ ∣ ∣ ∣ ∣∣1+1x1x1x1+1y2+1y1y1+1z1+1x3+1z∣∣ ∣ ∣ ∣ ∣ ∣∣=0=xyz∣∣ ∣ ∣ ∣ ∣ ∣∣3+1x+1y+1z3+1x+1y+1z3+1x+1y+1z1+1y2+1y1y1+1z1+1z3+1z∣∣ ∣ ∣ ∣ ∣ ∣∣=0Takingoutcommon(3+1x+1y+1z)fromR1=(xyz)(1x+1y+1z+3)∣∣ ∣ ∣ ∣ ∣∣1111+1y2+1y1y1+1z1+1z3+1z∣∣ ∣ ∣ ∣ ∣∣=0=(xyz)(1x+1y+1z+3)∣∣ ∣ ∣ ∣ ∣∣1001+1y1−11+1z02∣∣ ∣ ∣ ∣ ∣∣=0ExpandingalongR1
⇒xy=(1x+1y+1z+3)[2−0]=0⇒2xy=(1x+1y+1z+3)=0⇒1x+1y+1z+3=0⇒−(1x+1y+1z)=3