If x,y, z are non-zero real numbers, then the inverse of matrix
A=⎡⎢⎣x000y000z⎤⎥⎦ is
a) ⎡⎢⎣x−1000y−1000z−1⎤⎥⎦
b) xyz⎡⎢⎣x−1000y−1000z−1⎤⎥⎦
c) 1xyz⎡⎢⎣x000y000z⎤⎥⎦
d) 1xyz⎡⎢⎣100010001⎤⎥⎦
Given, A=⎡⎢⎣x000y000z⎤⎥⎦
|A|=⎡⎢⎣x000y000z⎤⎥⎦=x(yz=0)=xyz≠0 (∵ x, y and z are non - zero )
Cofactors of A are
A11=(yz−0)=yz,A12=−(0−0)=0A13=0−0=0A21=−(0−0)=0,A22=xz−0=xzA23=−(0−0)=0A31=0−0=0A32=−(0−0)=0A33=(xy−0)=xy
∴ adj(A)=⎡⎢⎣yz000xz000xy⎤⎥⎦=⎡⎢⎣yz000xz000xy⎤⎥⎦
Now, A−1=1|A|(adj A)
=1xyz⎡⎢⎣yz000xz000xy⎤⎥⎦=⎡⎢
⎢
⎢⎣1x0001y0001z⎤⎥
⎥
⎥⎦=⎡⎢⎣x−1000y−1000z−1⎤⎥⎦
Hence, the correct option is(a)