If x,y,z are real numbers satisfying the expression 25(9x2+y2)+9z2-15(5xy+yz+3xz)=0, then x,y,z are in
AP
GP
HP
AGP
Explanation for the correct option.
Step 1: Simplify the given equation.
25(9x2+y2)+9z2-15(5xy+yz+3xz)=0⇒225x2+25y2+9z2-75xy-15yz-45xz=0⇒15x2+5y2+3z2-5y15x-5y3z-3z15x=0⇒1215x-5y2+5y-3z2+3z-15x2=0bya2+b2+c2-ab-bc-ca=12a-b2+b-c2+c-a2⇒15x-5y2+5y-3z2+3z-15x2=0
Step 2:Find the value of x,yandz.
As, x,y,z are real numbers, so
15x-5y2=0⇒15x=5y⇒3x=y5y-3z2=0⇒5y=3z⇒53x=3z⇒z=5x3z-15x2=0⇒3z=15x⇒35x=15x⇒x=1
So, x=1.y=3,andz=5
Therefore, x,y,z are in AP with a=1,andd=2
Hence, option A is correct.