x+y+z=4⇒z=4−(x+y) ⋯(1)
x2+y2+z2=6
Using equation (1),
x2+y2+(4−(x+y))2=6⇒x2+y2+16+(x+y)2−8(x+y)=6⇒2y2+(2x−8)y+(2x2−8x+10)=0
which is a quadratic equation in y.
As y∈R, so Δ≥0
⇒(2x−8)2−4×2×(2x2−8x+10)≥0⇒x2+16−8x−2(2x2−8x+10)≥0⇒3x2−8x+4≤0⇒(3x−2)(x−2)≤0⇒23≤x≤2
Possible integral values of x are 1,2.
Hence, the number of integral values of x is 2.