If x,y,z are the sides of pedal triangle of △ABC, then x+y+z is equal to
(For △ABC, usual notations are used)
A
4RsinA⋅sinB⋅sinC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
4Rsin2A⋅sin2B⋅sin2C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ΔR
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2ΔR
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D2ΔR We know, for a △ABC; sides of its pedal triangle are Rsin2A,Rsin2B,Rsin2C ⇒x+y+z=R(sin2A+sin2B+sin2C)=4RsinAsinBsinC[∵for△ABCsin2A+sin2B+sin2C=4sinAsinBsinC]=4R⋅abc8R3=abc2R2=2ΔR[∵Δ=abc4R]