Given : (^i+^j+3^k)x+(3^i−3^j+^k)y+(−4^i+5^j)z=α(x^i+y^j+z^k)
Equating the coefficient of ^i,^j and ^k, we get
x+3y−4z=αx⇒(1−α)x+3y−4z=0 ⋯(i)
x−3y+5z=αy⇒x−(3+α)y+5z=0 ⋯(ii)
3x+y=αz⇒3x+y−αz=0 ⋯(iii)
Since (x,y,z)≠0
Using (i),(ii) and (iii), we get
⇒∣∣
∣
∣∣(1−α)3−41−(3+α)531−α∣∣
∣
∣∣=0
⇒(1−α)(α(3+α)−5)−3(−α−15)−4(1+3(3+α))=0
Simplifying, we get
⇒−α3−2α2−α=0
⇒−α(α2+2α+1)=0
∴α=−1,0