If x+y+z=xyz, prove that 2x1−x2+2y1−y2+2z1−z2=2x1−x2⋅2y1−y2⋅2z1−z2.
Open in App
Solution
Put x=tanA,y=tanB and z=tanC Since x+y+z=xyz, ∴tanA+tanB+tanC−tanAtanBtanC=0 or S1−S3=0 Hence tan(A+B+C)=S1−S31−S2=01−S2=0 ∴A+B=C=0 or nπ or 2A+2B+2C=0 or 2nπ tan(2A+2B+2C)=0 S1−S31−S2=0∴S1=S3 or tan2A+tan2B+tan2C=tan2Atan2Btan2C Now put tan2A=2tanA1−tan2A=2x1−x2 etc. Another form: Put x=tanA etc., then by given relation x+y+z=xyz ∴tanA+tanB+tanC=tanAtanBtanC. Hence A+B+C=π or 2A+2B+2C=2π etc. ∴tan2A+tan2B+tan2C=tan2Atan2Btan2C.